
Upper Body Tracking Using the Polhemus Fastrak

Scott McMillan

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Technical Report NPSCS-96-002

31 January 1996

1. Introduction

This technical report presents the design and implementation of the sensor system used

to track the arms and ri
e motions with respect to the upper body. This was performed as

part of the AUSA `95 dismounted infantry work { an e�ort to insert humans into NPSNet's

distributed virtual environment. The sensor work can be divided into three areas: (1) the

Fastrak setup including sensor positions and interface to the computer as well as the device

driver software, (2) the software interface to the Jack model and the inverse kinematics

algorithm needed to achieve \reasonable" arm tracking, and (3) the implementation of the

ri
e tracking and the initial attempts at targeting.

In the next section, a description of the hardware is presented. This includes the serial

cable for the Fastrak unit to the computer, transmitter and receiver (sensor) ports, and

DIP switch settings. It also illustrates the coordinate systems associated with each of

these hardware components. Section 3 presents the corresponding device driver that was

developed.

In Section 4, the placement of the sensors on the person to be tracked is illustrated

and the organization of the upper body tracking software is introduced. In particular, the

top-level interface functions between the NPSNet application and the algorithms developed

in this work are described. This section is followed by the inverse kinematics routines for

arm tracking (Section 5), and the algorithms for ri
e tracking and targeting (Section 6).

Following AUSA `95, development of the head-mounted display (HMD) interface to use

the new Fastrak device driver was performed. Section 7 describes this work. The report

concludes with a summary and discussion of the work that needs to be performed to make

this a better system.

SGI Computer Polhemus
Fastrak
Unit
(top view)

serial port

DB9 serial port: tty2

serial cable:
 2 − 2
 3 − 3
 7 − 5

Long Ranger

Transmitter cable

1 2 3 4 5 6 7 8 1 2 3 4

I/O Select SW Rcvr Select SW

Rcvr 4: rifle

Rcvr 3: right wrist

Rcvr 2: left wrist

Receiver
 cables

Rcvr 1: torso or HMD

Figure 1: Fastrak hardware setup.

2. Polhemus Fastrak Hardware Setup

Figure 1 illustrates the hardware components used in the upper body sensor system. At

the center is the Polhemus Fastrak unit. It is interfaced to the SGI workstation via a serial

cable. In this case, a DB9 connector is assumed for the computer's serial port (as in the

case of elvis or the Onyxes used at the AUSA'95 demonstration) the pins to be connected to

support software
ow control (i.e., XON/XOFF) are also given. Other cables for the DIN8

connector on Indigo2 workstations as well as hardware
ow control cables can be found in

the back of the Fastrak Reference Manual [1].

Also on the rear of the Fastrak unit, a set of eight DIP (I/O Select) switches are used

to con�gure the unit's serial communication. The switch con�guration shown in the �gure

speci�es an RS232 9600 baud connection with 8 data bits and no parity, and enables software

ow control (the con�guration used at AUSA'95). Further documentation on these switches

can be found on pages 11{14 of [1].

Note that although the Fastrak unit is capable of communicating at higher baud rates,

the standard serial ports on most SGI workstations are incapable of exceeding 9600 baud

using software
ow control. Although attempts were made to use these higher baud rates

with one of the speci�ed hardware
ow control cables, no success has been achieved in

con�guring the port properly in software to establish such a connection. This should be a

topic for further investigation because the serial communication is a bottleneck to achiev-

2

x

z

z

x

z

x

P
O

LH
E

M
U

S

x

y

(a) (b) (c)

Figure 2: Coordinate systems for (a) a sensor (default), the standard transmitter (default),

and (b) the Long Ranger (small - default; after setup - large).

ing sample rates higher than 15Hz when all four sensors are in use. Note that although

frame update on the NPSNET application is 15Hz, higher baud rates would not only allow

for communication of higher precision data but also permit �ltering while introducing no

additional lag.

On the front of the fastrak unit are the ports for the four sensors and the transmitter

which can be either the short-range standard transmitter (the black box that comes with

the unit) or the Long Ranger (also referred to as 'disco ball' which is currently mounted

from the ceiling near elvis). Each sensor is referred to as a station in [1], and in order to

ENABLE the unit process data for any station, the corresponding DIP switch on the front

of the unit must be placed in the DOWN position.

Figures 2(b) and (c) give the default coordinate systems associated with the standard

transmitter and the Long Ranger, respectively. The latter is on a small clear plastic \but-

ton" attached at the intersection of two of the coils as shown in the �gure. The Fastrak

unit provides the ability to rede�ne the transmitter's coordinate systems for each sensor,

individually. in this application, however, the coordinate systems are expected to be the

same for all sensors for the sake of simplicity.

The Long Ranger coordinate system used at the AUSA'95 show is given by the large

arrows in Figure 2(c) with the x-axis out to the individual's right and the y-axis out the front

in the direction of the individual's center of view. This is accomplished during initialization

of the Fastrak unit described in the next section. This is also nearly equivalent to what is

used to align the transmitter when using the HMD (see Section 7).

3

3. Device Driver: FastrakClass

The �rst task to be solved in this project was to develop the fastest possible interface to

the Fastrak unit. This is built on a previous version of the device driver that was originally

developed for the Isotrak at Sarcos and revised by Paul Barham and Jiang Zhu. Its purpose

was to track one (HMD) and sometimes two (HMD and ri
e) sensors. Although it was a

very functional interface because it allowed the user to recon�gure the Fastrak on-the-
y,

the approach resulted in very low sample rates which degraded further when tracking four

sensors.

Realizing that most of the original functionality is unnecessary because once the unit is

set up NPSNet will not change it, most of this functionality was discarded in an e�ort to gain

speed. The result is a device driver that could allow con�guration only during initialization,

and sets up only one communication mode { a continuous binary stream of data { which

was not supported by the previous version. This section discusses the initialization of the

Fastrak unit, the communication setup implemented, the procedure for processing the data

(the heart of the device driver), and the C++ class that was created to contain this driver

along with the few accessor functions that have been provided as the user interface.

A. Polhemus Fastrak Initialization

The device driver and the Fastrak initialization are performed when the constructor of

the FastrakClass is called:

FastrakClass(ifstream &config_fileobj,

short datatype_flags = FSTK_DEFAULT_MASK);

This is called from the UpperBodyClass constructor and must be passed an ifstream

reference to the input con�guration �le (as shown in Appendix A) containing the parameters

to con�gure the Fastrak unit. A second, optional parameter speci�es what data types will

be processed for all active sensors and sent over the serial connection. If omitted, the default

data types are the three position coordinates and euler angles using a special 16BIT
oating

point format (see below).

The constructor inputs the data from the con�guration �le (readConfig), then it opens

the IO port (openIOPort), con�gures the Fastrak unit, and spawns the process to handle

the input (initMultiprocessing). The �rst parameter read from the con�guration �le is

the device name of the port to which the unit is connected:

PORT: /dev/ttyd2

This is the second serial port, and the `d' speci�es that dumb terminal mode is desired. This

mode requires only a three lead cable connecting RxD, TxD, and GND pins as illustrated in

Figure 1. Other parameters read in from the �le include the
ags indicating which sensors

(also referred to as stations) are to be active, and the hemisphere and alignment parameters

for each sensor. In order to be valid, the active sensor
ags must have corresponding DIP

4

switches in the front of the unit in the down position. For AUSA'95, all four sensors are

active and all four switches are down resulting in the following line in the con�guration �le:

WANTED_STATIONS: 1 1 1 1

Note that the switches may be down for inactive sensors; however, the Fastrak unit appears

to process its data anyway, but won't transmit it. This can lead to unnecessary delays.

The hemisphere and alignment parameters are described in [1] on pp. 88{91 and pp.

42{49 and are speci�ed in the con�guration �le (in Appendix A) as follows:

STATIONx_PARAM:

hemisphere: 0 0 -1

origin: 0 0 0

x_point: -1 0 0

y_point: 0 -1 0

In the �rst line, the hemisphere describes which half of the space around the transmitter

the sensors are to be operated in. This is necessary since the computation by the Fastrak

unit leads to two solutions for position and orientation and this information is needed to

determine which is correct. Operating sensors outside this hemisphere leads to incorrect

results. The hemisphere is de�ned relative to the transmitter's default coordinate system

as shown in Figure 2. In this case, the hemisphere around the negative z axis will be used

as the area of operation (which is the \bottom" half in its current con�guration).

The other three lines de�ne the alignment of the transmitter coordinate system with

respect to its default one. The second line says to reference all position measurements with

respect to the transmitters default origin. With the hemisphere de�ned as above, this origin

appears to be at the bottom of the Long Ranger as shown in Figure 2. The last two lines

e�ectively rotate the default coordinate system by 180 degrees about the z-axis so that

x and y axes are pointing in their opposite directions. These hemisphere and alignment

parameters can be de�ned di�erently for each sensor, but to maintain consistency required

by the kinematics algorithms, it is the same for all sensors.

B. Communication Requirements with the Fastrak

The previous version of the Fastrak device driver was written to explicitly poll the

Fastrak unit for each packet of data. Using this approach, the 'P' command would be sent

and the computer would wait for the Fastrak to sample the sensors sequentially, compute

the solution, return the result in ASCII format over the serial communication line.

This approach su�ered from a number of problems. First, the sample rate was deter-

mined by how fast the computer could send its requests which would always be less than

the Fastrak was capable of producing because the process on the computer responsible

for requesting the data would remain idle while the Fastrak was performing its sampling,

computation and communication, and the Fastrak would be idle while the computer was

processing this data. Although this was slightly alleviated by sproc'ing a process that would

send requests as soon as it received a packet. The sample rate is still much lower than the

maximum rates for the unit (120Hz with one sensor, 60Hz with two, and 30Hz with four).

5

Table 1: Maximum sample communication rates achievable with four Polhemus sensors

versus baud rate, number of sensors and data format (assuming the transmission of three

position values and three Euler angles). The (*) indicates that 4 sensor rates are limited

by the units ability to produce the data to 30Hz, and 2 sensor rates are limited to 60Hz.

1 sensor@9600 baud

2 sensors@9600 baud 2 sensors@19.2K baud

4 sensors@9600 baud 4 sensors@19.2K baud 4 sensors@38.4K baud

ASCII 5.33Hz 10.67Hz 21.33Hz

IEEE-FP 8.89Hz 17.78Hz 35.56Hz(*)

16BIT 16Hz 32Hz(*) 64Hz(*)

In addition, as the number of sensors to be sampled increases the processing time increases

because each sensor is processed sequentially (something the Ascension unit does not su�er

from), and then the packet size to be transmitted increases and results in longer communi-

cation delays. Finally, the packet consisted of formatted
oating point numbers represented

by seven ASCII characters per number which is unnecessarily ine�cient.

The �rst step was to con�gure the Fastrak unit to output a non-stop stream of data.

In this mode, the unit starts the next sensor sampling period as soon as the previous one

is completed. This removes the need to poll the unit for each packet and increases the

Fastrak's sample rate. In this mode, a function is required to process the incoming data

(see the subsequent discussions on the Serial Port Setup and Raw TTY Processing).

The next bottleneck to overcome was the speed of the serial communication of the

data. Using the ASCII format, a minimum of 45 characters must be transmitted per sensor

because the header consists of three characters and each of six
oating point numbers (three

for position and three Euler angles) is represented by seven characters. The maximum

communication rate for these packets is listed in the �rst row of Table 1 for various baud

rates and numbers of sensors. It shows that a communication rate of 38.4Kbaud is required

to achieve the 15Hz sample rate required by the NPSNet application. This baud rate

requires special hardware: either the Audio/Serial Option (ASO) for the Onyx (not available

at AUSA'95), or a special hardware handshaking cable.

The latter was attempted without luck: either the cable speci�ed in [1] was inadequate

and/or the computer's serial port was con�gured incorrectly in software (no help could be

obtained from Polhemus, Inc. because they are unfamiliar with SGI/Unix platforms). The

alternative is to reduce the size of the packet to be transmitted. If single precision on IEEE

oating point format is used, only four bytes per number are required which drops the

packet size to 27 bytes per sensor and results in the rates presented in the second row of

the table. Note that the 35.56Hz rate is achievable for the 1 and 2 sensor cases, whereas,

the 4 sensor case is limited by the Fastrak unit's ability to produce samples at the 30Hz

rate. However, the rate for four sensors at 9600 baud is still too low.

The solution to this problem is to use the Fastrak unit's special 16BIT
oating point

format (a 14 bit 2's-complement format with implicit ranges as speci�ed on pp. 110{111

6

of [1]) that only requires two bytes per number. This reduces the packet size to 15 bytes

per sensor will exceed the desired 15Hz sample rate while still using a simple (three-lead)

serial cable at 9600 baud. Although this format su�ers from reduced precision as compared

to the IEEE
oating point format, experience has shown that the electromagnetic noise

a�ecting the sensor's accuracy is high enough in normal operation to mask any increased

quantization e�ects that might be seen with this format.

C. Serial Port Setup

Using this mode, however, binary data will be transmitted by the Fastrak unit that

would contain XON/XOFF characters that are not meant for
ow control. Therefore, the

computer's serial port must be con�gured in a special way to prevent \hanging" when an

XOFF character is transmitted. In addition there are no carriage returns or line feeds to

indicate end-of-line, so that the standard canonical mode input processing cannot be used.

Instead, the termio struct used to con�gure the required port is given as follows:

struct termio term;

memset(&term, 0, sizeof(term));

term.c_cflag = B9600|CS8|CLOCAL|CREAD|HUPCL;

term.c_iflag = IXOFF;

term.c_cc[VMIN] = 0;

term.c_cc[VTIME] = 5;

where the c cflag con�gures the port for 8 data, 1 start, and 1 stop bits, 9600 baud and

no parity.

The c iflag = IXOFF allows software
ow control in one direction so that the computer

may suspend and resume the data
ow using XON/XOFF characters while disabling
ow

control in the other direction to prevent the Fastrak data from a�ecting
ow in the other

direction. Non-canonical processing is speci�ed using the c cc �eld of the struct (see the

termio man pages). With the VMIN parameter set to zero, a read on the port is satis�ed as

soon as a single character is received or a timer speci�ed in tenths of seconds by the VTIME

parameter expires. Note, however, that more than one character can be requested during

any given read and up to that many characters can be received if the serial port's bu�er

contains them.

D. TTY Input Processing

Because the data is read in on a byte-by-byte basis, a routine is needed to query the

port for data, take what data is available, identify which sensor it corresponds to, convert

the data to IEEE
oating point numbers and place them in bu�ers so that the NPSNet

application can access them. The functions and bu�ers used to accomplish this task are

illustrated in Figure 3.

After the serial port is con�gured as described above, a function called pollContinuously

is sproc'ed by the FastrakClass object. This function starts the Fastrak's continuous

7

pollContinuously

read_buffer datarec

Device Driver
 Buffers

Data Stream
from Fastrak

datarec_buf

 readData
getPosOrient
 getHMatrix

get_all_inputs() get_multival()

LOCK

Application
 Buffers

copyBuffergetPacket

Serial Port
 Buffer

Application

Device
Driver

Figure 3: Software and bu�er organization used in the device driver and application pro-

cesses.

stream of data, calls getPacket (a member function of the FastrakClass) continuously un-

til its parent process sends a quit signal, halts the stream of data, and exits. The getPacket

function is a private member of the FastrakClass and performs all of the work required

to convert the data stream into packets of data from each sensor. It reads data that is

available from the serial port into a temporary character bu�er called read buffer. If

no data is available, the read will time out as described above, and the while loop in

pollContinuously will ensure the read is tried again.

If new data is read and there is enough to complete an entire packet for a single sen-

sor, data will be processed and transferred to a second bu�er. The processing consists of

synchronizing with the stream, identifying which sensor the data corresponds to and trans-

ferring the appropriate number of bytes. The synchronization is accomplished by searching

for a 0x303# pattern in the three header bytes that precede each sensor's data as follows:

0x30 0x3# error code byte data...

where \#" is the number corresponding the sensor's number (i.e., 0x31 for the �rst sensor,

0x32 for the second sensor, etc.). If the procedure, is not already synchronized it will

start discarding the data in read buffer until this pattern is detected. When a complete

packet for one sensor is collected, the data is transferred to the \device driver" bu�er

(datarec buf).

The transfer to this second bu�er is protected by a lock to ensure mutual exclusion.

This will ensure that the application does not access this bu�er while it is being updated.

To reduce the accesses to this bu�er a function called copyBuffer has been provided so that

the application can copy the entire datarec buf for all four sensors into yet another \ap-

plication" bu�er (datarec). For the NPSNet/Performer application, this function is called

once at the beginning of each frame (approximately 15Hz) by calling the UpperBodyClass's

8

member function called get all inputs. The data for all the sensors is transferred and

then used throughout remaining computations.

E. Convenience Functions

This implementation has been encapsulated within the C++ class, FastrakClass.

Three public member functions of the FastrakClass are provided for the application to

access, in a more \convenient" form, the data that the device driver has transferred to the

datarec bu�er. As shown in Figure 3 these are readData, getPosOrient, and getHMatrix.

If necessary, these functions convert the internal 16BIT data format to IEEE single precision

oating point numbers and place them in the appropriate arrays of
oats. These functions

are de�ned as follows:

int readData(FSTK stations station num, FSTK datatypes data type,

float *data dest);

station num is an enumerated type with values (FSTK STATION1, FSTK STATION2,

FSTK STATION3, FSTK STATION4) specifying which sensor's data is to be accessed,

data type is an enumerated type that indicates which part of the sensor's data is to

be accessed, and data dest points to an array
oats where the data will be stored.

In order to be valid, the data type requested must be one of the ones for which the

Fastrak was con�gured to transmit to the computer during initialization. The possible

values are as follows along with a description of what is returned in data dest:

FSTK COORD TYPE position data in centimeters or inches (3
oats)

FSTK EULER TYPE Euler angles in degrees (3
oats)

FSTK XCOS TYPE x-directional cosine (3
oats)

FSTK YCOS TYPE y-directional cosine (3
oats)

FSTK ZCOS TYPE z-directional cosine (3
oats)

FSTK QUAT TYPE unit quaternion (4
oats)

FSTK 16BIT COORD TYPE position data in centimeters or inches (3
oats)

FSTK 16BIT EULER TYPE Euler angles in degrees (3
oats)

FSTK 16BIT QUAT TYPE unit quaternion (4
oats)

Except for the last three, IEEE
oating point data is assumed and a function to convert

the data from the Fastrak's byte-reversed format to the Unix format (convertData)

is called before it is stored in the array. For the last three, the convert16BITData

function is used to compute the
oating point numbers. The function will return TRUE

if no errors have been encountered.

int getPosOrient(FSTK stations station num, FSTK datatypes orient type,

float pos[3], float *orient);

This provides a way of getting position and orientation in a single function call.

The function determines which position format has been con�gured and calls the

appropriate conversion routine and stores the result in an array of three
oats pointed

to by pos. If no position format has been speci�ed during initialization, the function

will return FALSE. The orient type parameter can be any one of (FSTK EULER TYPE,

9

FSTK QUAT TYPE, FSTK 16BIT EULER TYPE, FSTK 16BIT QUAT TYPE) provided it was

selected during initialization; otherwise, an error will result and the function will

return FALSE. If a valid orientation type has been speci�ed the result will be stored in

the array pointed to by orient which must be either three or four (for quaternions)

bytes long.

int getHMatrix(FSTK stations station num, float Hmatrix[4][4]);

This function computes a 4 � 4 transformation matrix that describes the speci�ed

sensor's position and orientation relative to the transmitter,
txHrx. The upper left 3�3

portion of the matrix contains the rotation matrix. Depending on which orientation

data type is speci�ed during initialization, this is computed from the Euler angles or

quaternions, or assigned from the directional cosine data that is provided from the

data. If no orientation information has been speci�ed, an error will occur and the

function will return FALSE. If a position data type has been speci�ed, the last column

of the Hmatrix will be �lled with this data; otherwise, it will be �lled with zeroes. A

1 will be placed in the (4,4) position to complete the matrix.

IMPORTANT NOTE: this matrix is the transpose of the matrix that would

be used by Performer functions that expect a pfMatrix with position data

in the fourth row.

4. NPSNet Interface: UpperBodyClass

To perform arm tracking, three of the four sensors are worn by the person to be tracked

as shown in Figure 4. The wrist sensors are attached with velcro wrist bands aligning the

sensor with the forearm so that the wire points along the forearm. Note that reasonable

alignment is important as calibration does not measure the orientation of the sensor relative

to the wrist. The torso sensor acts as a reference system and is worn high on the back on

the outside of the shoulder harness with the sensor wire running down the back. The fourth

sensor is mounted on the ri
e. The preferred ri
e sensor orientation is shown in the �gure

which aligns the sensor's axes as shown in Figure 2(a) with the graphical model of the ri
es

currently included with the Jack models (x along the barrel and z up).

A. Object-Oriented Design

The software was written in C++ using object-oriented design (OOD) concepts and

was incorporated into NPSNet IV.9. The object and class hierarchies for this software are

given in Figure 5(a) and (b), respectively. The top-level object, upper body, is of type

UpperBodyClass and provides the interface for the NPSNet software. The upper body

object also has four component objects consisting of the fastrak unit, two arms, and the

ri
e. The implementation of which is described in detail in the sections that follow.

To support the NPSNet interface, the UpperBodyClass inherits NPSNet's input device

class de�nition and implements all of the necessary virtual functions to support its use

10

back

Sensor 1: torso
Sensor 2: left wrist Sensor 3: right wrist

Sensor 4: rifle

Figure 4: Polhemus sensor locations.

as an input device: exists(), calibrate(), get all inputs(), set multival(), and

get multival(). A brief description of these interface functions are given as follows:

UpperBodyClass(const char *cfg filename) The constructor, when called, results in

the initialization of the entire system, including the creation of the other objects

in the system and initialization of the Fastrak unit and serial communications. The

single parameter provided is a string containing the full path and name of the �le that

speci�es how the various elements of this system should be con�gured. An example

�le is listed in Appendix A.

int exists() This function returns TRUE (1) if everything was created and the Fastrak

was initialized without any errors.

int calibrate(const NPS VALUATOR, const NPS CALIBRATION prompt, const float)

This function must be called before the system is used to setup internal variables that

are used in the kinematics computations for the arms and ri
e. It currently initiates

the arm/torso sensor calibration by having the users wearing the sensors place their

arms in two calibration positions. Only the second argument, prompt, is used by

this routine. If prompt=NPS UB DELAY, then a time delay will be used to sample the

sensors at the appropriate times. In this mode, a three second delay will occur be-

tween the prompt printed on the screen and the actual sampling of the sensor. This is

useful for when the user is alone and cannot press return. If prompt=NPS UB PROMPT

or prompt=NPS CAL is speci�ed a second user will press return after the sensored user

has placed their arms in each of the required positions. The operations performed in

this calibration routine are discussed in the section describing the ArmClasses.

11

upper_body

right_arm left_arm

fastrak_unit

rifle

(a)

input_device

FastrakClass ArmClass

RightArmClass

RifleClass

UpperBodyClass

LeftArmClass

(b)

Figure 5: The object (a) and class (b) hierarchies for the software.

void get all inputs(pfChannel *) This function is used to transfer the latest data from

the Fastrak device driver bu�ers to the member variables in the upper body object

and also scales the position data to be expressed in meters instead of centimeters. This

is called from the NPSNet application at the beginning of each frame of computation,

and is done to reduce the mutual exclusion overhead involved in accessing these bu�ers.

See the section on FastrakClass for additional information on the device driver. The

parameter is unused.

int set multival(const NPS MULTIVAL tag, void *values) This function is used for

inputting data into the upper body software from the NPSNet application. This

is currently used to set the transformation matrices that specify the position and

orientation of both wrists with respect to the Jack model's UPWAIST coordinate system.

The tag parameter is set to NPS MV RIGHTHAND to set the matrix for the right arm and

NPS MV LEFTHAND to set the value for the left arm. In either case, values is a pointer

to a pfMatrix which contains the transformation matrix as de�ned in the Performer

12

API (transposed with the position vector along the fourth row). This is done so that

the ri
e can be snapped to the hand positions (with reasonable accuracy) when the

hands approach the appropriate positions. This is discussed in the section on the

RifleClass.

int get multival(const NPS MULTIVAL tag, void *values) This function is used to

initiate the various computations needed to perform the upper body and ri
e tracking.

If this function is called with tag=NPS MV UPPERBODY, then the inverse kinematics

routines to compute the joint angles for both arms are executed. The results are

returned in an array of fixedDatumRecord structs which is the fixed datum element

of a DataPDU struct that is pointed to by the values parameter. These structs are

de�ned in src/communication/include/pdu.h as follows:

typedef struct {

unsigned int datum_id;

float datum;

} fixedDatumRecord;

typedef struct {

PDUHeader header;

EntityID orig_entity_id;

ForceID orig_force_id;

EntityID recv_entity_id;

ForceID recv_force_id;

unsigned int request_id;

unsigned int num_datum_fixed;

fixedDatumRecord fixed_datum[MAX_FIXED_DATUM_SIZE];

} DataPDU;

The enumerated type de�ned in src/entities/include/jointmods.h is used to in-

dex into this array which is de�ned as follows:

enum {

LS0 = 0, LS1, LS2, LE0, LW0, LW1, LW2, // Left arm joints

RS0, RS1, RS2, RE0, RW0, RW1, RW2, // Right arm joints

RCX, RCY, RCZ, RCH, RCP, RCR, // Rifle pfCoord values

NUM_HIRES_VALUES

};

The get multival performs any conversions from internally de�ned joint angles to

those needed for the Jack model and assigns them to the appropriate joint variables in

this array. The conversions are listed in the last columns of Table 2 and a description

of the inverse kinematics algorithms are contained in the section on ArmClasses.

If this function is called with tag=NPS MV RIFLE, then the function to compute the po-

sition and orientation of the ri
e is computed and placed in the array of fixedDatum-

Records pointed to by values.

13

If this function is called with tag=NPS MV TARGET RIFLE, then a crude targeting func-

tion is executed and the result, the position and orientation of the vector describing

the line of �re in the world coordinate system, is stored in a pfCoord that is pointed

at by values. Both of these functions are described in more detail in the section on

the RifleClass.

B. Procedural Flow

This section describes the order of the top level calls to the functions listed in the

previous section to perform arm and ri
e tracking. This code is spread throughout the �le

jack di veh.cc (ask Randall Barker for implementation speci�cs):

1. Initialize Jack: besides the standard initialization, this also involves cloning the

graphical ri
e model removing it from the hull DCS and attaching it to Jack's UPWAIST

DCS. Since all ri
e tracking is performed with respect to the torso sensor, attaching

the graphical model to the DCS which tracks with the upper torso simpli�es some of

the computation. Also set the joint overrides for the shoulders, elbows, and wrists.

2. Initialize the upper body system: Instantiate the object hierarchy by calling the

UpperBodyClass constructor.

3. Calibrate: If construction is successful, call the calibrate() function.

4. Main Loop:

(a) Get new data: Update the bu�ers containing the latest Fastrak data by calling

get all inputs().

(b) Compute arm joint angles: This is accomplished with a call to get multival

with the tag set to NPS MV UPPERBODY.

(c) Set the Jack model arm angles.

(d) Compute actual Jack wrist positions: This computes the transformation

matrices from Jack's UPWAIST coordinate system to each wrist. This accounts

for model di�erences between Jack's and the one described in the next section

for the inverse kinematics. Two calls to set multival with the tag equal to

NPS MV RIGHTHAND and NPS MV LEFTHAND are needed to transfer these results to

the UpperBodyClass object.

(e) Compute ri
e position and orientation: Using the position of the graphical

wrists and the position and orientation of the real ri
e (via sensor) data, deter-

mine the new ri
e position. If the wrist positions are \close" to the corresponding

grasping positions on the ri
e, the ri
e position and orientation are modi�ed to

\snap-to" the hands.

(f) Repeat Main Loop.

In the sections that follow, the algorithms to perform the calibration, arm joint angle

computations, ri
e position and orientation, and snap-to are described.

14

Joint i−1

Joint i

Joint i+1

ẑ

ẑ

ẑ

x̂

i−1

x̂ i−1

i
i

i+1

α i

ai

di

θ i

Link i

i−1Link

pi
i−1

Figure 6: Link coordinate system assignment and MDH parameters.

5. Arm Tracking and the Jack Model: ArmClass

In this section, the ArmClasses are described. It contains the inverse kinematics code

for each arm (individual functions are contained in the RightArmClass and LeftArmClass.

These functions are based on the modi�ed Denavit-Hartenberg (MDH) notation for spec-

ifying the kinematics of a linkage system; therefore, this notation is described �rst. Using

this notation, the kinematics of both arms can be closely approximated as a series of seven

links connected by revolute joints. Only the �rst �ve joints (three shoulder, one elbow,

and the forearm roll) are considered in this work and presented in the second part of this

section. Then the inverse kinematics algorithm is described. Finally, a brief description of

the calibration routine is provided.

A. Link Coordinate Systems and Modi�ed Denavit-Hartenberg (MDH) Parameters

The most e�cient dynamics algorithms for articulated mechanisms result when coordi-

nate systems are assigned to each link in the system. For a vast majority of systems, the

links in the serial chains are attached to one another with single degree-of-freedom revolute

or prismatic joints. In these cases, it is e�cient to assign these coordinate systems accord-

ing to a set of rules similar to those �rst described by Denavit and Hartenberg in [2]. The

resulting modi�ed Denavit-Hartenberg (MDH) notation has also been presented by Craig

in [3].

15

Using this notation, the links are numbered, in succession, from link 1, attached to the

base, to the last link at the tip or end-e�ector, link N . As shown in Figure 6, the joint

between links i � 1 and i is labeled joint i, and the origin of coordinate frame i lies on

the axis of this joint's motion. Further, this coordinate frame is �xed to link i at the end

\nearest" the base.

The axes of each coordinate system are aligned so that the z-axis, ẑ lies along the axis

of motion of the joint. This is the axis about which the joint rotates for revolute joints, and

along which the joint translates for prismatic joints. The x-axis, x̂, lies along the common

normal between this joint axis and the next one in the chain as shown in Figure 6. With

this arrangement, only four parameters are needed to describe the relative position and

orientation between adjacent coordinate systems. To move from link i � 1's coordinate

system to link i, these parameters are de�ned as follows:

ai = the perpendicular distance along x̂i�1 from ẑi�1 to ẑi,

�i = the angle about x̂i�1 from ẑi�1 to ẑi,

di = the perpendicular distance along ẑi from x̂i�1 to x̂i, and

�i = the angle about ẑi from x̂i�1 to x̂i,

where di is variable if joint i is prismatic, or �i is variable if it is revolute. Note that when

the base of the chain is �xed with respect to an inertial frame, it is convenient to place the

origin of coordinate frame 0 coincident with coordinate system 1 with its z-axis also along

joint 1. As a result, the only non-zero parameter is the joint variable, �1 or d1.

These parameters are used to de�ne the homogeneous transformation matrix (including

the rotation matrix, R, and position vector, p) from one coordinate frame to the next. This

transformation from coordinate frame i� 1 to frame i is de�ned as follows:

iHi�1 =

"
iRi�1

ipi�1

0 0 0 1

#
=

2
6664

c�i s�ic�i s�is�i �ai c�i
�s�i c�ic�i c�is�i ai s�i

0 �s�i c�i �di
0 0 0 1

3
7775 ; (1)

where s�i; c�i; s�i; and c�i denote sin�i, cos�i, sin�i, and cos�i, respectively. The inverse

of this matrix speci�es the transformation in the opposite direction and is given as follows:

i�1Hi =

"
iRT

i�1 �iRT

i�1
ipi�1

0 0 0 1

#
=

2
6664

c�i �s�i 0 ai

s�ic�i c�ic�i �s�i �di s�i

s�is�i c�is�i c�i di c�i

0 0 0 1

3
7775 : (2)

It is important to note these matrices are the transpose of the matrices used by the Performer

API.

B. The Jack Model

In this part, the models for both of Jack's arms are speci�ed using the MDH notation

from the previous section. Much of the background information for this comes from a

technical report by Deepak Tolani from the University of Pennsylvania [4]. Each wrist sensor

allows for up to six degrees of freedom (DOFs) to be tracked relative to the torso sensor.

16

zz0 1

z2

x2

x0 x

,

,

x x,3 4

z3

z4

z5

x5

0 x1,

zz0 1 z2

x2

,

z4

z3

z5

x5

x x,3 4

x1

,

zx

u=0.328m

l=0.2593m

uw

Figure 7: Jack's and MDH parameter coordinate systems.

With the clavicle joint �xed, only �ve DOFs are actually tracked: the three shoulder DOFs

(it is approximated by a perfectly spherical ball joint), an elbow joint, and the forearm roll.

Placing the sensor on the hand would have resulted in a seven DOF system which cannot

be adequately tracked by a single sensor.

These �ve DOFs for each arm result in a set of six coordinate systems per arm as shown

in Figure 7. The extra (zeroth) system acts as a base for each arm that is assumed to

be �xed with respect to the torso sensor. Calibration, which is discussed later, is used

to measure this constant o�set. The upper and lower arm lengths have been speci�ed by

Tolani to be u = 0:328 and l = 0:2593 meters, respectively. Tolani also indicated a o�set

of the elbow joint of 0.5cm into the page when looking at Figure 7. This has been omitted

to simplify the inverse kinematics computation without reducing the accuracy of the result,

especially when sensor noise is considered.

The MDH parameters used in this work are listed in Table 2 for both arms. The arms

in Figure 7 are shown in Jack's \zero" position where all joint angles are zero. This does

not correspond to zero MDH joint angles, �i, whose values are listed in �fth column of the

tables. The last column of the table, therefore, speci�es the conversions from MDH angle

values to the corresponding Jack model angles along with the tokens used in the NPSNet

software to index the proper joint angle variable. The MDH zero position puts both arms

17

Table 2: Modi�ed Denavit-Hartenberg (MDH) parameters that correspond to the arm

coordinate systems used by the Jack model including the simple transformations from MDH

joint angles to Jack's arm angles. The arm lengths, taken from Tolani [4], are u =0.328 and

l =0.2593 meters.

Link i ai �i di �i Jack angle

1 0 0
�

0 0
�

�[RS2] = �1

2 0 90
�

0 �90� �[RS1] = �2 + 90
�

3 0 90
� �u 90

�
�[RS0] = �3 � 90

�

4 0 �90� 0 0
�

�[RE0] = �4

5 0 90
� �l �90� �[RW2] = �5 + 90

�

(a) Right arm.

Link i ai �i di �i Jack angle

1 0 0
�

0 0
�

�[LS2] = �1

2 0 �90� 0 �90� �[LS1] = �2 + 90
�

3 0 �90� u 90
�

�[LS0] = �3 � 90
�

4 0 90
�

0 0
�

�[LE0] = �4

5 0 �90� l �90� �[LW2] = �5 + 90
�

(b) Left arm.

straight out to the side with the palms down.

C. Inverse Kinematics Algorithm

In this section, the inverse kinematics algorithm to compute the joint angles from the

Fastrak sensor data is presented. Because both procedures are equivalent except for dif-

ferences in parameters, only the inverse kinematics for the right arm is presented in this

section. This corresponds to the function RightArmClass::inverseKinematics5adj.

Step 1. Sensor Input Transformation

The input required by the inverse kinematics algorithm is the homogeneous transforma-

tion matrix of the wrist's coordinate system with respect to its shoulder's,
shHrw (or

0H5

using the MDH coordinate system numbers). The sensor data obtained from the Fastrak

device driver is the transformation of the sensors' coordinate systems with respect to the

transmitter's aligned coordinate system.

To distinguish between the various sensors, the right wrist sensor's transformation is

referred to as
txHrws and the torso sensor's transformation is referred to as

txHts. To

obtain the desired input, the following series of transformations must be performed:

shHrw =
shHts

txH�1

ts

txHrws
rwsHrw; (3)

where
shHts is the transformation from the torso sensor the shoulder coordinate system

18

which is assumed to be constant because the clavicle joints are not modeled, and
rwsHrw is

the constant transformation from the right wrist to the corresponding sensor's coordinate

system. Both of these transformation matrices must be computed during the calibration

that is described later.

Step 2. Elbow angle, �4

The distance between the shoulder and the wrist is given by the magnitude of the

position vector,
shp

rw
, taken from the result of Eq. (3). Using the rule that kshp

rw
k =

krwp
sh
k, a mathematical expression for the corresponding distance in the graphical model

is computed from the position vector,
5p0, in the following homogeneous transformation:"

5R0
5p0

0 0 0 1

#
=

5H4
4H3

3H2
2H1

1H0; where (4)

5p0 =

2
64 �us4c5

us4s5

l + uc4

3
75 : (5)

The magnitude of this distance simpli�es to a function of only �4, the elbow joint angle, as

follows:

k5p0k
2

= u
2
+ l

2
+ 2ulc4 (6)

If the real arm is within the graphical arms reachable volume the elbow joint angle can be

computed normally as follows:

�4 = arccos

kshprwk

2 � u
2 � l

2

2ul

!
(7)

This ensures that the graphical model's wrist is as far away from the shoulder as the real

one.

If kshp
rw
k > (u + l), the wrist sensor has gone farther from the shoulder than the

graphical model is capable of reaching. In this case, �4 is set to 0
�
because a workspace

boundary has been exceeded and the elbow joint is fully extended to get closest to desired

position. If kshprwk < (u � l), the graphical wrist is trying to be driven too close to the

shoulder (the other workspace boundary) and �4 is set to 180
�
. Finally, the term inside

of the parenthesis of Eq. (7) should not stray outside the range [-1, 1] due to roundo� or

truncation errors before performing the arccos function.

Step 3. Forearm roll angle, �5

The next step is to compute the forearm roll angle from the position vectors,
shp

rw
and

5p0. First, the position of the shoulder with respect to the sensed position of the wrist is

computed using the terms in Eq. (3):

rwp
sh

= �shR
T

rw

shp
rw
; (8)

19

which corresponds to
5p0 in the graphical model:

rwp
sh

=

2
64 px

py

pz

3
75 =

2
64 �us4c5

us4s5

l + uc4

3
75 : (9)

With �4 computed from the previous step, the �rst two elements of
rwp

sh
are used to

compute �5:

�5 = arctan

�
py=us4

�px=us4

�
: (10)

Note, however, that if sin(�4) = 0 (or close), the two elements of the position vector used

here will be zero (or close). and �5 is unde�ned (or poorly de�ned due to roundo� errors).

This is one of the singularities in the arm where the number of degrees of freedom drops

to four which occurs when the arm is fully extended or the elbow is bent 180
�
. Although

the latter is not physically possible, the situation can occur periodically with sensor and

calibration noise that is present. In this case, the value of �5 does not matter, so it is set to

its most recent previous valid value to prevent discontinuous jumps in the graphical model.

Step 4. Shoulder angles, �1;2;3

With �4 and �5 computed, the last step is to compute the three shoulder angles from the

orientation information. To do this the sensed orientation of the shoulder joints is equated

to the mathematical expression for the graphical model. The sensed orientation is computed

with the following rotation matrix:

0Rsensed

3
=

shRrw
5R4(�5)

4R3(�4) =

2
64 r11 r12 r13

r21 r22 r23

r31 r32 r33

3
75 ; (11)

where the de�nition for
iRi�1 is de�ned in Eq (1). The mathematical expression for the

corresponding matrix in the graphical model is computed as follows:

0R3 =
0R1

1R2
2R3 =

2
64 c1c2c3 + s1s3 �c1c2s3 + s1c3 c1s2

s1c2c3 � c1s3 �s1c2s3 � s1c3 s1s2

s2c3 �s2s3 �c2

3
75 : (12)

The procedure for computing the three shoulder angles comes from equating various

elements of the matrices in Eqs. (11) and (12). The second angle is computed �rst using

one of two equivalent functions:

�2 = arctan

0
@
q
r2
31
+ r2

32

�r33

1
A = arctan

0
@
q
r2
13
+ r2

23

�r33

1
A (13)

If sin �2 6= 0
�
, then the computation of the �nal two angles is straightforward:

�1 = arctan

�
�r23= sin �2
r13= sin �2

�
; (14)

20

θ

psh
rw

kε

ε

=

u

l

psh
rw

p0
5

p0
5

psh
rw

(a) (b) (c)

Figure 8: Steps in inverse kinematics procedure to drive Jack's arms to the desired position:

(a) use original inverse kinematics to get proper orientation (Steps 2, 3, and 4), (b) determine

axis and angle to rotate arm to proper position (Step 5), and (c) update shoulder angles to

a�ect this rotation (Step 6).

�3 = arctan

�
�r32= sin �2
r31= sin �2

�
: (15)

If sin(�2) = 0, the second type of singularity has occurred in which the �rst and third joint

axes line up and another degree of freedom is lost, and the previous equations to compute �1

and �3 cannot be used. Instead, only a linear combination of these angles can be computed.

This is accomplished by examining the (1,1) and (2,1) elements of the rotation matrices

and using the fact that sin(�2) = 0 and cos(�2) = 1:

r11 = c1c3 + s1s3 = cos(�1 � �3); (16)

r21 = s1c3 � c1s3 = sin(�1 � �3); and (17)

(�1 � �3) = arctan

�
r21

r11

�
: (18)

The new value for �3 is then set to its previous value and �1(new) = (�1 � �3) + �3(new).

Step 5. Position error, (k�; ��)

If the real and graphical arms were the same size and no noise was present in the sensor

readings, the joint angles computed in the previous steps would place the graphical arm in

the same position and orientation as the real arm. This is not the case as is illustrated in

Figure 8. Figure 8(a) shows an example of a real arm con�guration that has not exceeded

the graphical arm's workspace. In Figure 8(b), the graphical arm con�guration computed

by Steps 2{4 are indicated by the dashed lines. The result of these steps ensures that the

orientation of the wrist will be the same for both arms; however, the position of the wrists

will be di�erent because the upper and lower arm lengths are di�erent.

21

Since a goal is to have the arms snap-to the ri
e (or vice versa), it becomes more

important to drive the graphical arms to the proper position at the expense of some error

in the �nal orientation. This will reduce amount of discontinuity when snap-to occurs.

Therefore additional steps are required to modify the results of the previous step.

The �rst step is illustrated in Figure 8(b) and involves the identi�cation of the axis

and angle of rotation (k�; ��) that is required to rotate the graphical arm so that
0p5 lines

up with
shp

rw
. The latter is determined from the sensor data in Step 1, and the former

must be determined by computing the complete forward kinematics using the joint angles

computed in Steps 2{4:"
0R5

0p5
0 0 0 1

#
=

0H1(�1)
1H2(�2)

2H3(�3)
3H4(�4)

4H5(�5): (19)

The normalized axis is computed from the cross-product as follows:

k� =

0p5 �
shp

rw

k0p5 �
shp

rw
k
; (20)

and the angle can be computed from the following [5]:

�� = arctan

k0p5 �

shp
rw
k

0p5 �
shp

rw

!
: (21)

Finally, the rotation matrix that corresponds to this angle and axis rotation, R(k�; ��), must

be computed. Note that when using Performer, the previous two equations can be replaced

with a call to pfMakeRotOntoMat(R(k�; ��);
shprw;

0p5) which computes the matrix directly.

Step 6. Recompute shoulder angles, �1;2;3

Since there are three angles about non-collinear axes (usually) at the shoulder, only the

shoulder angles need to be modi�ed to achieve the desired rotation computed in Step 5.

This is accomplished by modifying
0Rsensed

3
in Eq. (11) as follows:

0Rsensed

3 = R(k�; ��)
shRrw

5R4(�5)
4R3(�4): (22)

With this matrix, the computation of theta1;2;3 in Step 4 is repeated. The result will be a

new set of shoulder angles that will position the wrist of the graphical model the same as

the real one as illustrated in Figure 8(c). Since, the angle and axis approach is used, which

de�nes the \shortest path" to the proper position, the resulting orientation of the wrist will

be as close as possible to the original orientation.

D. Calibration

As stated before, the purpose of calibration is to determine the constant transforma-

tion matrices from the wrist sensors to the model's wrist coordinate systems (
lwsHlw and

rwsHrw), and from the model's shoulder coordinate systems and the torso sensor (
lshHts

and
rshHts) that are used in Step 1 of the inverse kinematics algorithm. There is currently

22

z

x

z

xlws

lws

z

x

zrws

xrws

Left wrist Right wrist

lw

lw

rw

rw

Figure 9: Wrist sensor calibration to wrist coordinate systems.

no way to measure the position and orientation of the wrist sensors with respect to the

corresponding wrist coordinate systems for the model. Therefore, it is assumed that the

sensors will be worn in a very speci�c orientation with respect to the wrists as shown in

Figure 9 where rw and lw correspond to coordinate system 5 in Figure 7 for right and left

arms, respectively.

Currently, the origin of the sensor coordinate system is assumed to be at the same point

as the origin of the wrist coordinate system. This introduces an error of a few centimeters

(not more than the noise inherent in the sensor data). It is also assumed that the x axis of

the sensor (lws or rws) is aligned with the forearms. This results in the following calibration

matrices for both wrists:

lwsHlw =

2
6664
0 0 1 0

0 �1 0 0

1 0 0 0

0 0 0 1

3
7775 ; (23)

rwsHrw =

2
6664
0 0 �1 0

0 1 0 0

1 0 0 0

0 0 0 1

3
7775 : (24)

If the o�set of the origins were desired it could be added to the last column of both matrices.

Determining the transformation from the torso sensor to shoulder coordinate systems

requires data from the wrist sensors after placing the arms in two di�erent calibration

positions as shown in Figure 10. First, the positions of the shoulder coordinate systems

with respect to the transmitter,
txp

rsh
and

txp
lsh
, are determined:

txprsh =
1

2

�
txp

side

rws
+

txp
side

lws

�
+

1

2

�
txp

front

rws
� txp

front

lws

�
; (25)

txp
lsh

=
1

2

�
txp

side

rws
+

txp
side

lws

�
�

1

2

�
txp

front

rws
� txp

front

lws

�
; (26)

where the side measurements have been used to determine the point halfway between

23

rshlsh

z zxx

prws
txptx

lws
side side

ptx
lws
front prws

tx front

ts

z

Figure 10: Torso sensor calibration to shoulder coordinate systems.

the shoulders, and the front measurements have been used to determine the width of the

shoulders, and hence, the o�set from the center point.

Second, the orientation of the shoulder coordinate systems with respect to the trans-

mitter,
txRrsh and

txRlsh, are estimated. This procedure begins with the assumption that

the z axis of the aligned transmitter points \up" and is reasonably plumb. With the x axes

of both shoulder coordinate systems pointing down with the person stands up straight then

the x axis of the shoulder coordinate systems with respect to the transmitter are given as:

txx̂sh = [0 0 � 1]
T
: (27)

In either calibration position, the z axis is parallel to the di�erence in the positions of the

right and left wrist sensors:

txẑsh =

txp
side

rws
� txp

side

lws

ktxpside
rws

� txp
side

lws
k
: (28)

The y axis is assumed to be perpendicular to these:

txŷ
sh

=

txẑsh �
tx x̂sh

ktxẑsh �tx x̂shk
: (29)

Finally, the z axis is adjusted to ensure the rotation matrix to be computed from this is

orthogonal:

txẑsh =

txx̂sh �
tx ŷ

sh

ktxx̂sh �tx ŷ
sh
k
: (30)

24

rs

z

x

r

z

x

z

ytx

x

y

x

z

ts

Htx

Htx
rs

ts

H r

H

H r
rs

uw

uw

uw
ts

Figure 11: Coordinate systems used in ri
e tracking.

From these results the desired rotation matrices are obtained as follows:

txRrsh =
txRlsh =

h
txx̂sh

txŷ
sh

txẑsh

i
: (31)

Finally, the desired calibration matrices can be computed:

rshHts =

"
txRrsh

txp
rsh

0 0 0 1

#
�1

txH
side

ts
and (32)

lshHts =

"
txRlsh

txp
lsh

0 0 0 1

#
�1

txH
side

ts
; (33)

where
txH

side

ts
is the transformation matrix describing the position and orientation of the

torso sensor with respect to the transmitter and is input from the Fastrak device driver

during calibration at the same time the arms are out to the side.

6. Ri
e Tracking: Ri
eClass

Since the ri
e is a single rigid body, tracking is much simpler. A sensor is attached to

the ri
e and the its position and orientation is tracked with respect to the torso sensor.

To make computation simpler the new graphical model for the ri
e is attached to Jack's

UPWAIST coordinate system which is indicated by the uw axes in Figure 7 and again in

Figure 11.

25

A. Tracking and Calibration

In animating the graphical ri
e, its position and orientation with respect to Jack's

UPWAIST coordinate system must be determined as speci�ed by the homogeneous transfor-

mation matrix,
uwHr, in Figure 11. This requires the sensor information for both the torso

and ri
e sensors,
txHts and

txHrs. The formula to determine this matrix is given as follows:

uwHr =
uwHts

txH
�1

ts

txHrs
rsHr; (34)

where
rsHr and

uwHts are two calibration matrices that must be determined before tracking

begins. Once this matrix is obtained the equivalent pfCoord can be computed with a call

to Performer's pfGetOrthoMatCoord.

The matrix,
rsHr, describes the position and orientation of the graphical ri
e's coordi-

nate system with respect to the real one's sensor. This is a constant matrix since the sensor

is rigidly attached to the ri
e that is held by the user. The sensor position and orientation

as illustrated in Figure 11 is determined o�-line and given as follows:

rsHr =

2
6664
1 0 0 0:05

0 1 0 0:0

0 0 1 �0:10

0 0 0 1

3
7775 ; (35)

where the rotation portion is an identity matrix because the axes of the model and ri
e are

parallel, and the position shows an o�set of 5cm along the sensor's x̂ axis and 10cm along

its �ẑ axis. This result is included in the con�guration �le in the section containing the

various ri
e parameters and labeled as rs2r as shown in Appendix A.

The matrix,
uwHts, speci�es the torso sensor's position and orientation with respect to

Jack's UPWAIST matrix. Although UPWAIST and shoulder coordinate systems are not the

same, their axes are parallel and Eqs (27), (29) and (30) can be also used in the computation

of this matrix where the orientation of the UPWAIST coordinate system is determined with

respect to the transmitter as follows:

uwRts =

h
txŷ

sh

txx̂sh �txẑsh

i
T

txRside

ts
; (36)

where
txRside

ts
is the orientation of the torso sensor taken during the arm calibration. Finally,

the homogeneous transformation matrix is computed as follows:

uwHts =

2
6664

uwRts

�0:040

�0:015

0:0

0 0 0 1

3
7775 ; (37)

Where the position vector is an assumption made about the approximate position of the

torso sensor with respect to the UPWAIST coordinate system. IMPORTANT: if the torso

sensor were to be worn in a signi�cantly di�erent position this vector would have

to be changed in the code and recompiled.

26

r

z

x

prpr l_att
r_att

Figure 12: Arm attachment positions for performing snap-to.

B. Snap-To

Due to assumptions made about the Jack model, approximations used in the calibration

procedure and sensor errors, the hands of the Jack model will not be in the proper position

with respect to the ri
e model when the real hands grasp the real ri
e. To solve this

problem, a \snap-to" algorithm has also been implemented where the graphical ri
e snaps

to Jack's hands when the real hands approach within a certain distance of the appropriate

positions on the ri
e. These positions are called the right and left hand attachment points,

rp
r att

and
rp

r att
, as illustrated in Figure 12 and are speci�ed in the con�guration �le that

is contained in Appendix A.

The the attachment points are computed with respect to the transmitter using a cali-

bration matrix and the ri
e sensor data as follows:

txp
att

=
txHrs

rsHr
rp

att
; (38)

where the att subscript corresponds to either the right (r att) or left (latt) attachment point.

The distance between this point and the corresponding wrist sensor is then determined.

If either (but not both) distance is below a certain threshold (currently 25cm) the

position of the ri
e is modi�ed so that the particular attachment point is equal to the

sensor position as follows (for the right hand in this example):

uwp
r

=
uwp

rw
� uwRr

rp
r att

(39)

where
uwp

rw
is the position of the right wrist of the Jack model with respect to the UPWAIST

coordinate system (this is extracted from the Jack model after the joint angles that were

computed in the inverse kinematics algorithm are applied). Also,
uwRr is the rotation

portion of the matrix computed in Eq. (34) and
uwpr computed here replaces the position

vector of the same matrix. The same procedure can be done for the left hand. By modifying

the position vector only, the orientation of the ri
e that is sensed can be preserved.

In the case where both wrist sensor are within there respective threshold distances a

slightly di�erent approach must be taken because this is a closed-loop con�guration where

the sensor data con
icts with the kinematic constraint equations. Two approaches can be

taken. The �rst is snap the ri
e to the right hand and command a new set of joint angles to

27

snap the left hand to its attachment position. While this would maintain the orientation of

the ri
e, the added computational burden of recomputing the inverse kinematics for the left

arm is signi�cant, and the NPSNet computation does not easily allow for additional changes

to the Jack model. Therefore, a second approach was taken where the ri
e is snapped to

the right hand and the ri
e's orientation is then modi�ed to come \close" to lining up with

the left hand.

This change in orientation is accomplished by computing a new rotation matrix,
uwRr.

First, the x-axis of the ri
e set parallel to vector from the right hand to the left hand

positions taken from the Jack model:

uwx̂r =

uwp
lw
� uwp

rw

kuwp
lw
� uwp

rw
k
; (40)

and z-axis is left unchanged for now, that is,
uwx̂r equals the third column of

uwRr as it

was computed in Eq. (34). This will maintain the same general roll orientation of the ri
e

when the y-axis is computed as follows:

uwŷ
r

=

uwẑr �
uw x̂r

kuwẑr �uw x̂rk
: (41)

Finally, the z-axis is orthogonalized:

uwẑr =

uwx̂r �
uw ŷ

r

kuwx̂r �uw ŷ
r
k
; (42)

and the new rotation matrix is constructed:

uwRr =

h
uwx̂r

uwŷr
uwẑr

i
: (43)

It this new rotation matrix and position vector that are used in the computation of the

pfCoord described above. Note, that the assumption that the x-axis lies on the line between

the two hand positions is crude and results in the ri
e stock
oating a few inches above the

left hand in the graphical model when snap-to to both hands is attempted. This is an area

requiring further development.

C. Targeting

The �nal task attempted at AUSA '95 was the use of the ri
e sensor to perform targeting

within the walk-in synthetic environment (WISE). This is actually an extremely di�cult

problem that requires calibration of the projection screens with respect to the Polhemus

transmitter. Lacking this only a crude targeting scheme could be implemented in which the

aiming only approximately follows the direction of the ri
e.

Since NPSNet performs targeting under the assumption that the y axis determines

the aim, an additional calibration matrix is introduced which performs the transformation

from the ri
e model's coordinate system (with the x-axis along the barrel) to the NPSNet's

28

coordinate system (with the y-axis along the barrel):

rRaim =

2
64 0 1 0

�1 0 0

0 0 1

3
75 : (44)

The orientation of orientation of the aiming coordinate system is computed as follows:

hullRaim =
hullRtx

txRrs
rRaim; (45)

where
hullRtx is the orientation of the transmitter with respect to the \hull" coordinate

system that is used to de�ne the orientation of any entity's coordinate system with respect

to Performer's global (terrain-�xed) coordinate system. In the current version of the code,

this matrix is set to the identity matrix, which means the y-axis of the transmitter MUST

be aligned with the forward direction of the human and the z-axis is up. The position of

the ri
e with respect to this hull coordinate system is constant at 1.5m along the z-axis.

This implementation is crude and falls in an area requiring a great deal of research and

development before a proper approach is developed.

7. HMD Tracking: hmdClass

Using the new Fastrak device driver, the old HMD tracking code in NPSNet was replaced

with a much more e�cient, low-latency version. Because this requires one of the Polhemus

sensor ports, it cannot currently be used in conjunction with the upper body tracking system

in its present state. This setup requires that the HMD's Polhemus sensor be plugged into

Port One { the same as the torso sensor.

A. Transmitter Alignment

As it is con�gured now, the wearer of the HMD stands or sits at a table containing a

pair Flight Control Sticks (FCS's) as shown in Figure 13. The \front" of the human in

the virtual environment is always towards the table in the real world. The virtual human's

heading can be changed using the FCS controls and the user can orient the view with

respect to this heading by rotating the HMD with respect to the table. As a result, the

hull dynamic coordinate system (DCS) that is associated with the Jack graphical model

in the NPSNet virtual environment can be associated with a static coordinate system with

respect to the real environment. This coordinate system is shown on the table in Figure 13.

The Fastrak device driver will return the orientation of the HMD's sensor with respect

to the transmitter. To reduce the amount of calculation that must be performed by the

application, the transmitter is aligned to the coordinate system just described. The proper

alignment parameters to place in the con�guration �le can be determined by running a

utility as follows from the npsnet directory:

% ./bin/fastrak_test ./datafiles/fastrak_test.dat

29

FCSFCS

o x

y

User

x

y
Long Ranger

Alignment
 Positions

Figure 13: Top view of surface containing the human's
ight control sticks (FCS's). The

alignment positions also correspond to the axes of the hull coordinate system associated

with every vehicle in NPSNet where y always points forward and x points to the right.

The Long Ranger's coordinate system corresponds to its default coordinate system as it is

mounted in the laboratory now.

It will initialize the Fastrak unit and prompt the user to place a sensor connected to port

one in three di�erent positions corresponding to the origin, a point along the x-axis, and a

point along the y-axis as indicated by the small boxes on the tabletop in Figure 13.

The program outputs the alignment information that should be placed in the appropriate

data�le in NPSNet. This �le is speci�ed in the config/config.vim new con�guration �le

after the new HMD FASTRAK FILE parameter (currently datafiles/fastrak vim.dat). A

transmitter orientation like the one illustrated in Figure 13 could result in the following

alignment information:

STATION1_PARAM:

hemisphere: 0 0 -1

origin: 0.22004 0.09843 -1.59384

x_point: -0.997687 0.00264599 -0.0679245

y_point: 0.000388254 -0.999004 -0.0446189

This information only needs to be updated when the forward direction of the human in

the real world needs to be changed. Note that speci�c (non-zero) origin information is not

necessary because the HMD tracking uses orientation and not position of the sensor.

30

B. HMD Calibration and Use

Once the transmitter is aligned, the NPSNet application can be started. The application

instantiates an object of the hmdClass which reads the appropriate config �le, and in

turn, instantiates an object of the FastrakClass. The next step during construction of the

hmdClass object is to call the class's calibrate() function to boresight the HMD.

The boresighting procedure is accomplished by placing the HMD in a prede�ned orien-

tation (facing the direction that will be used as 'forward' from then on) and sampling the

sensor. This measures the orientation of the HMD's internally mounted sensor with respect

to some coordinate system that is associated with the human's head (or camera) in the

virtual environment. If this orientation is represented by the 3� 3 rotation matrix
rxRhmd,

then it may be computed as follows:

rxRhmd =
txRT

rx

txRcal

hmd
(46)

where rx and tx refer to the receiver (sensor) and transmitter coordinate systems (as before),

and hmd refers to the HMD or camera coordinate system that speci�es the view direction in

the virtual environment. The rotation matrix,
txRcal

hmd
, is the calibration matrix correspond-

ing to the prede�ned HMD orientation with respect to the aligned transmitter coordinate

system, and
txRT

rx
is the matrix returned by the FastrakClass that speci�es the orientation

of the sensor with respect to the transmitter. In this case the HMD is placed or worn with

the person view pointing straight along the y-axis. Since the y-axis is the forward-looking

vector, this calibration matrix is the identity matrix. Note that calibrate()may be called

anytime during the NPSNet application to reboresight the HMD.

During normal operation of the simulator, the NPSNet application queries the hmdClass

object for the current HMD orientation with respect to the hull coordinate system,
hullRhmd.

The hmdClass object queries the FastrakClass object for the current sensor orientation

txRT

rx
and performs the follow operation to obtain the desired result:

hullRhmd =
txRrx

rxRhmd (47)

Because the transmitter has been aligned to the hull using the con�guration parameters,

the superscripts, tx and hull refer to the same coordinate system, and no additional matrix

multiply is required.

The function trak view(), in view.cc, combines the rotation matrix result with the

look.xyz position to determine the complete homogeneous transformation specifying the

view with respect to the hull. Multiplying this by an additional transformation using the

posture pfCoord completes the speci�cation of the view position and orientation with

respect to virtual environments �xed coordinate system (often referred to as the Perform

coordinates).

8. Summary and Future Work

This report contains a detailed description of the work that was completed to implement

the Fastrak device driver; the algorithms to perform arm, ri
e, and HMD tracking; and the

31

interface to NPSNet IV.9. There many areas that can be improved to make this a more

generally usable system.

The �rst problem involves the baud rate of the Fastrak's serial connection. Limited to

a 9600 baud serial connection, the maximum sample rate achieved was about 16 Hz when

requesting both position and orientation information for four sensors. The reference manual

[1] states the four sensors can be sampled as high as 30Hz which requires a higher baud

rate. Attempts to increase the communication baud rate has been unsuccessful thus far.

With 30Hz, some simple �ltering could be implemented without introducing noticeable lag

in NPSNet which runs at 15Hz. With the Ultratrak system that supports more sensors, the

need for higher baud rates becomes even more important if the desired sample rates are to

be obtained.

Part of the problem may be that the SGI serial ports are incapable of communicating

above 9600 baud with software handshaking (XON/XOFF). In this case the solution may be

to implement a serial cable capable of hardware handshaking. Another part of the problem

may be that the termio software setup for the port is incorrect for the higher baud rates.

Lack of time and the fact that the employees at Polhemus are of little help when dealing

with SGI systems have both contributed to this continuing problem which deserves some

study. A considerable amount of email (with code) from SGI/Polhemus users discussing

potential solutions to this problem are available upon request.

The second area of potential improvement is in the implementation of the Fastrak device

driver (the FastrakClass). The most immediate problem involves the initialization of the

Fastrak unit. During instantiation of the class, a CTRL-Y character is sent to the unit

which should trigger a 10 second reboot procedure (when the green light on the front of the

unit
ashes). Many times after power up the unit does not receive or recognize command.

This situation requires that the software be restarted and/or the unit be power cycled in

an attempt to reset the unit. This is not a fullproof procedure and may be required several

times in various combinations.

This device driver code is based on a version developed by Paul Barham and Jiang

Zhu in which the Fastrak device would provide sensor data only after it was speci�cally

requested. This is referred to as the explicit polling method. Even when multiprocessing,

this version would continually request data, wait, and receive it after the unit sampled the

sensors. This was an extremely ine�cient method and resulted in very low sample rates.

The version developed here con�gures the Fastrak unit to continually sample the sensors

and send the data over the serial line. It is continually monitored by the device driver which

stores the data in a bu�er for subsequent access by the application.

In the original approach, it was also simple to send new commands to recon�gure the

unit. With the new approach, any con�guration must be completed before the unit starts

streaming sensor data. No support has been provided to suspend the function that reads

this data so that new commands can be sent to the Fastrak unit. This is adequate for the

applications discussed in this report since recon�guration is not needed during operation,

but it may limit its functionality for other applications.

Another limitation of the device driver is the ability to specify desired datatypes. Cur-

rently, the datatypes (e.g., position coordinates and euler angles) sent from the Fastrak unit

must be the same for all sensors being sampled. This is speci�ed as an optional parame-

32

ter to the FastrakClass constructor and is a constraint imposed by this software and not

the Fastrak unit itself. With the development of the full body sensor systems, support for

heterogeneous data types across the sensors is anticipated. For example, orientation and

position data would be required from one sensor representing the reference system while

only orientation data would be required from sensors attached to each segment of the arm.

This approach would signi�cantly reduce the amount of information to be sent across the

serial line. One possible solution, would be to encode the desired data types for each sensor

and provide it with the sensor-speci�c data in the con�guration �le (the STATIONx PARAM

data presented on page 5), and modifying the constructor to read this data and con�gure

the Fastrak unit appropriately.

Third, the FastrakClass provides no way of using the Fastrak unit's commands to

boresight the sensors (the functions exist, but they are not called in the constructor). This

is partly due to the fact that the e�ect of these commands are not completely understood.

It may provide a way to reduce some of the application's computation by moving multipli-

cations involving some of the constant calibration matrices to the Fastrak unit's hardware.

With the development of the HMD software, inconsistent procedures for the use of the

FastrakClass between this and the upper body system have been noticed. This suggests

that some modi�cations to the system are needed. The �rst, is that con�guration �les for

the Fastrak unit have di�erent formats. The upper body system requires a single �le with

parameters that apply to the ri
e as well as the Fastrak parameters, while the HMD �le

only contains the Fastrak parameters. It would probably be more consistent to have Fastrak

con�guration �les that are separate from the application's parameters; therefore, the upper

body system would have a separate �le containing the ri
e parameters.

Second, the method of transmitter alignment is di�erent for the HMD and upper body

code. The upper body code assumes a certain amount of information about the orienta-

tion of the transmitter (that is, the z-axis is vertical). On the other hand, the HMD code

requires some o�-line sensor measurements to determine the actual transmitter orientation

and produces a set of station parameters for the con�guration �le that will align the trans-

mitter system as desired. The latter procedure could be incorporated into the upper body

system to make it less sensitive to the actual transmitter orientation.

The use of calibration to measure the transformations between the torso and the shoul-

ders is inconsistent with the use of the graphical models arm lengths rather than measuring

the actual arms. Since the graphical model cannot be changed, it may be an improvement

to measure the torso to shoulder transformation as it is stored in the Jack model. Then

calibration would only be responsible for determining the position and orientation of the

torso sensor with respect to Jack's UPWAIST coordinate system.

Finally, a practice that makes the upper body algorithm very \brittle" is its use of con-

stant calibration matrices such as the wrist sensor to wrist matrices,
lwsHlw and

rwsHrw,

and the ri
e sensor to ri
e,
rsHr. It would be more general if these matrices could be

measured during calibration (i.e., place the wrists and ri
e in a known con�guration and

measure them). As a result the constraints on mounting the sensors would be much less

strict. While the rotation portion could be easily obtained by placing the wrists/ri
e in

a known orientation and measuring the sensor orientation, the o�set (position vector) can

only be obtained by direct measurement of the sensor mount position relative to the corre-

33

sponding body's graphical coordinate system.

9. Acknowledgments

The author would like to acknowledge the help and guidance of Dr. David Pratt (PI),

Paul Barham, and Randall Barker who were directly involved in the design and development

of the dismounted infantry code in NPSNet. Thanks also go to the NPSNet sponsors: the

U.S. Army Research Laboratories (ARL), Advanced Research Projects Agency (ARPA),

Defense Modeling and Simulation O�ce (DMSO), U.S. Army Topographic Engineering

Center (TEC), STRICOM, U.S. Army TRADOC Analysis Center (TRAC), and NPS Direct

Funding.

10. References

[1] Polhemus, Inc., Colchester, VT, 3SPACE FASTRAK User's Manual: Revision F,

November 1993.

[2] J. Denavit and R. S. Hartenberg, \A Kinematic Notation for Lower-Pair Mechanisms

Based on Matrices," ASME Journal of Applied Mathematics, pp. 215{221, June 1955.

[3] J. J. Craig, Introduction to Robotics: Mechanics and Control. Reading, MA: Addison-

Wesley, 1986.

[4] D. Tolani, \Inverse Kinematics of the Human Arm," HMS Laboratory Technical Report,

University of Pennsylvania, March 1989.

[5] W. H. Beyer, ed., CRC Standard Mathematical Tables and Formulae, (Boston), CRC

Press, Inc, 1991.

A. Con�guration File Example

This is a configuration file for the UpperbodyClass using four Polhemus

sensors: one on the rifle, one on each wrist, one on the upper torso

(between the shoulder blades).

#

The file format:

a). A line starting with a '#' is a comment line.

b). Each line must not contain more than 255 characters.

c). Maintain the order of the parameters (i.e., the station

parameters, hemisphere and alignment, must be the last

part of the file).

34

================ Parameters for the UpperBodyClass ==================

none

================== Parameters for the ArmClasses ====================

none

================== Parameters for the RifleClass ====================

rifle sensor to rifle model transformation and right and left hand

attachment points with respect to the rifle model

AR-15/M203 rubber rifle with grenade launcher

RIFLE:

rs2r: 1.0 0.0 0.0 0.051

0.0 1.0 0.0 0.0

0.0 0.0 1.0 -0.102

0.0 0.0 0.0 1.0

ratt: -0.2288 -0.0127 -0.0505

latt: 0.1340 0.0254 -0.005

================ Parameters for the FastrakClass ==================

the serial port name for the FASTRAK

PORT: /dev/ttyd2

Active sensors must be set to one here and set the switch on the front of

the unit

WANTED_STATIONS: 1 1 1 1

Parameters for the hemisphere and alignment of each station.

Omitted stations will use the system defaults.

The STATION#_PARAM line and the four parameter lines following it must

immediately follow one another. There can be no comment lines among them.

the hemisphere and alignment of station 1

STATION1_PARAM:

hemisphere: 0 0 -1

origin: 0 0 0

x_point: -1 0 0

y_point: 0 -1 0

the hemisphere and alignment of station 2

STATION2_PARAM:

hemisphere: 0 0 -1

origin: 0 0 0

x_point: -1 0 0

y_point: 0 -1 0

the hemisphere and alignment of station 3

STATION3_PARAM:

35

hemisphere: 0 0 -1

origin: 0 0 0

x_point: -1 0 0

y_point: 0 -1 0

the hemisphere and alignment of station 4

STATION4_PARAM:

hemisphere: 0 0 -1

origin: 0 0 0

x_point: -1 0 0

y_point: 0 -1 0

36

